Datasets¶
Overview¶
- class BigBenchHard(task_name: Literal['object_counting'] = 'object_counting', root: str = None, split: Literal['train', 'val', 'test'] = 'train', *args, **kwargs)[source]¶
- Bases: - Dataset- Big Bench Hard dataset for object counting task. - You can find the task name from the following link: https://github.com/suzgunmirac/BIG-Bench-Hard/tree/main/bbh - Data will be saved to ~/.adalflow/cache_datasets/BBH_object_counting/{split}.csv if root is not specified. - Size for each split: - train: 50 examples - val: 100 examples - test: 100 examples - Parameters:
- task_name (str) – The name of the task. “{task_name}” is the task name in the dataset. 
- root (str, optional) – Root directory of the dataset to save the data. Defaults to ~/.adalflow/cache_datasets/task_name. 
- split (str, optional) – The dataset split, supports - "train"(default),- "val"and- "test".
 
 
- class HotPotQA(only_hard_examples=True, root: str = None, split: Literal['train', 'val', 'test'] = 'train', keep_details: Literal['all', 'dev_titles', 'none'] = 'dev_titles', size: int = None, **kwargs)[source]¶
- Bases: - Dataset
- class Example(id: str = '9df2c18a-470c-4c27-ae44-e237ce1236d2', question: str = None, answer: str = None)[source]¶
- Bases: - DataClass- A common dataclass for representing examples in a dataset. - id: str = '9df2c18a-470c-4c27-ae44-e237ce1236d2'¶
 - question: str = None¶
 - answer: str = None¶
 
- class HotPotQAData(id: str = '9df2c18a-470c-4c27-ae44-e237ce1236d2', question: str = None, answer: str = None, gold_titles: set = None, context: Dict[str, object] = None)[source]¶
- Bases: - Example- A dataclass for representing examples in the HotPotQA dataset. - gold_titles: set = None¶
 - context: Dict[str, object] = None¶
 
- class TrecDataset(root: str = None, split: Literal['train', 'test'] = 'train')[source]¶
- Bases: - Dataset- Trec dataset for question classification. - Here we only load a small subset of the dataset for training and evaluation. - In default: train: 600, 100 per class, val: 36, test: 144 All class-balanced. - Reference: - https://huggingface.co/datasets/trec labels: https://huggingface.co/datasets/trec/blob/main/trec.py 
- class TrecData(id: str = 'e8f1eed0-1cd4-486e-b43c-2cf5927a7fc2', question: str = None, class_name: str = None, class_index: int = -1)[source]¶
- Bases: - BaseData- A dataclass for representing examples in the TREC dataset. - question: str = None¶
 - class_name: str = None¶
 - class_index: int = -1¶
 
- class GSM8KData(id: str = '9df2c18a-470c-4c27-ae44-e237ce1236d2', question: str = None, answer: str = None, gold_reasoning: str = None, reasoning: str = None)[source]¶
- Bases: - Example- A dataclass for representing examples in the GSM8K dataset. - You can reset the output fields: - GSM8KData.set_output_fields(["answer"]) - gold_reasoning: str = None¶
 - reasoning: str = None¶
 
- class GSM8K(root: str = None, split: Literal['train', 'val', 'test'] = 'train', size: int = None, **kwargs)[source]¶
- Bases: - Dataset- Use huggingface datasets to load GSM8K dataset. - official_train: 7473 official_test: 1319 - Our train split: 3736/2 Our val split: 3736/2 Our test split: 1319 - You can use size to limit the number of examples to load. - Example: - dataset = GSM8K(split="train", size=10) print(f"example: {dataset[0]}") - The output will be: - GSM8KData(id='8fc791e6-ea1d-472c-a882-d00d0600d423', question="The result from the 40-item Statistics exam Marion and Ella took already came out. Ella got 4 incorrect answers while Marion got 6 more than half the score of Ella. What is Marion's score?", answer='24', gold_reasoning="Ella's score is 40 items - 4 items = <<40-4=36>>36 items. Half of Ella's score is 36 items / 2 = <<36/2=18>>18 items. So, Marion's score is 18 items + 6 items = <<18+6=24>>24 items.", reasoning=None)