Datasets¶
Overview¶
- class BigBenchHard(task_name: Literal['object_counting'] = 'object_counting', root: str = None, split: Literal['train', 'val', 'test'] = 'train', *args, **kwargs)[source]¶
Bases:
Dataset
Big Bench Hard dataset for object counting task.
You can find the task name from the following link: https://github.com/suzgunmirac/BIG-Bench-Hard/tree/main/bbh
Data will be saved to ~/.adalflow/cache_datasets/BBH_object_counting/{split}.csv if root is not specified.
Size for each split: - train: 50 examples - val: 100 examples - test: 100 examples
- Parameters:
task_name (str) – The name of the task. “{task_name}” is the task name in the dataset.
root (str, optional) – Root directory of the dataset to save the data. Defaults to ~/.adalflow/cache_datasets/task_name.
split (str, optional) – The dataset split, supports
"train"
(default),"val"
and"test"
.
- class HotPotQA(only_hard_examples=True, root: str = None, split: Literal['train', 'val', 'test'] = 'train', keep_details: Literal['all', 'dev_titles', 'none'] = 'dev_titles', size: int = None, **kwargs)[source]¶
Bases:
Dataset
- class Example(id: str = 'd6848ef8-7d79-4905-a100-6d52072ec398', question: str = None, answer: str = None)[source]¶
Bases:
DataClass
A common dataclass for representing examples in a dataset.
- id: str = 'd6848ef8-7d79-4905-a100-6d52072ec398'¶
- question: str = None¶
- answer: str = None¶
- class HotPotQAData(id: str = 'd6848ef8-7d79-4905-a100-6d52072ec398', question: str = None, answer: str = None, gold_titles: set = None, context: Dict[str, object] = None)[source]¶
Bases:
Example
A dataclass for representing examples in the HotPotQA dataset.
- gold_titles: set = None¶
- context: Dict[str, object] = None¶
- class TrecDataset(root: str = None, split: Literal['train', 'test'] = 'train')[source]¶
Bases:
Dataset
Trec dataset for question classification.
Here we only load a small subset of the dataset for training and evaluation.
In default: train: 600, 100 per class, val: 36, test: 144 All class-balanced.
Reference: - https://huggingface.co/datasets/trec labels: https://huggingface.co/datasets/trec/blob/main/trec.py
- class TrecData(id: str = '30a4a2ae-8e0d-48b9-b648-09eab438b542', question: str = None, class_name: str = None, class_index: int = -1)[source]¶
Bases:
BaseData
A dataclass for representing examples in the TREC dataset.
- question: str = None¶
- class_name: str = None¶
- class_index: int = -1¶
- class GSM8KData(id: str = 'd6848ef8-7d79-4905-a100-6d52072ec398', question: str = None, answer: str = None, gold_reasoning: str = None, reasoning: str = None)[source]¶
Bases:
Example
A dataclass for representing examples in the GSM8K dataset.
You can reset the output fields:
GSM8KData.set_output_fields(["answer"])
- gold_reasoning: str = None¶
- reasoning: str = None¶
- class GSM8K(root: str = None, split: Literal['train', 'val', 'test'] = 'train', size: int = None, **kwargs)[source]¶
Bases:
Dataset
Use huggingface datasets to load GSM8K dataset.
official_train: 7473 official_test: 1319
Our train split: 3736/2 Our val split: 3736/2 Our test split: 1319
You can use size to limit the number of examples to load.
Example:
dataset = GSM8K(split="train", size=10) print(f"example: {dataset[0]}")
The output will be:
GSM8KData(id='8fc791e6-ea1d-472c-a882-d00d0600d423', question="The result from the 40-item Statistics exam Marion and Ella took already came out. Ella got 4 incorrect answers while Marion got 6 more than half the score of Ella. What is Marion's score?", answer='24', gold_reasoning="Ella's score is 40 items - 4 items = <<40-4=36>>36 items. Half of Ella's score is 36 items / 2 = <<36/2=18>>18 items. So, Marion's score is 18 items + 6 items = <<18+6=24>>24 items.", reasoning=None)