types#
All data types used by Parameter, Optimizer, AdalComponent, and Trainer.
Classes
|
A single evaluation of task pipeline response to a score in range [0, 1]. |
|
Enum for the type of parameter to compute the loss with, and to inform the optimizer. |
|
|
|
|
|
|
|
A single evaluation of task pipeline response to a score in range [0, 1]. |
- class ParameterType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
Enum
Enum for the type of parameter to compute the loss with, and to inform the optimizer.
- PROMPT = 'prompt'#
- DEMOS = 'demos'#
- INPUT = 'input'#
- OUTPUT = 'output'#
- HYPERPARAM = 'hyperparam'#
- GRADIENT = 'gradient'#
- GENERATOR_OUTPUT = 'generator_output'#
- RETRIEVER_OUTPUT = 'retriever_output'#
- LOSS_OUTPUT = 'loss'#
- SUM_OUTPUT = 'sum'#
- NONE = 'none'#
- class EvaluationResult(score: float = 0.0, feedback: str = '')[source]#
Bases:
DataClass
A single evaluation of task pipeline response to a score in range [0, 1].
- score: float = 0.0#
- feedback: str = ''#
- class PromptData(id: str, name: str, data: str, requires_opt: bool = True)[source]#
Bases:
object
- id: str#
- name: str#
- data: str#
- requires_opt: bool = True#
- class TrainerStepResult(step: int = 0, val_score: float = None, test_score: float = None, attempted_val_score: float = None, prompt: List[optim.types.PromptData] = None)[source]#
Bases:
DataClass
- step: int = 0#
- val_score: float = None#
- test_score: float = None#
- attempted_val_score: float = None#
- prompt: List[PromptData] = None#
- class TrainerValidateStats(max_score: float = 0.0, min_score: float = 0.0, mean_of_score: float = 0.0, std_of_score: float = 0.0)[source]#
Bases:
object
A single evaluation of task pipeline response to a score in range [0, 1].
- max_score: float = 0.0#
- min_score: float = 0.0#
- mean_of_score: float = 0.0#
- std_of_score: float = 0.0#
- class TrainerResult(steps: List[int] = <factory>, val_scores: List[float] = <factory>, test_scores: List[float] = <factory>, prompts: List[List[optim.types.PromptData]] = <factory>, step_results: List[optim.types.TrainerStepResult] = <factory>, effective_measure: Dict[str, Dict] = <factory>, validate_stats: optim.types.TrainerValidateStats = None, time_stamp: str = <factory>, trainer_state: Dict[str, Any] = None)[source]#
Bases:
DataClass
- steps: List[int]#
- val_scores: List[float]#
- test_scores: List[float]#
- prompts: List[List[PromptData]]#
- step_results: List[TrainerStepResult]#
- effective_measure: Dict[str, Dict]#
- validate_stats: TrainerValidateStats = None#
- time_stamp: str#
- trainer_state: Dict[str, Any] = None#