types¶
All data types used by Parameter, Optimizer, AdalComponent, and Trainer.
Classes
|
A single evaluation of task pipeline response to a score in range [0, 1]. |
|
Enum for the type of parameter to compute the loss with, and to inform the optimizer. |
|
|
|
|
|
|
|
A single evaluation of task pipeline response to a score in range [0, 1]. |
- class ParameterType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶
Bases:
Enum
Enum for the type of parameter to compute the loss with, and to inform the optimizer.
The meaning of reach tuple is: 1. First element: the name of the parameter. 2. Second element: the description of the parameter. 3. Third element: whether the parameter is trainable.
To access each element, use the following: 1. name: ParameterType.PROMPT.value 2. description: ParameterType.PROMPT.description 3. trainable: ParameterType.PROMPT.default_trainable
- PROMPT = 'prompt'¶
- DEMOS = 'demos'¶
- INPUT = 'input'¶
- OUTPUT = 'output'¶
- HYPERPARAM = 'hyperparam'¶
- GENERATOR_OUTPUT = 'generator_output'¶
- RETRIEVER_OUTPUT = 'retriever_output'¶
- LOSS_OUTPUT = 'loss'¶
- SUM_OUTPUT = 'sum'¶
- NONE = 'none'¶
- class EvaluationResult(score: float = 0.0, feedback: str = '')[source]¶
Bases:
DataClass
A single evaluation of task pipeline response to a score in range [0, 1].
- score: float = 0.0¶
- feedback: str = ''¶
- class PromptData(id: str, name: str, data: str, requires_opt: bool = True)[source]¶
Bases:
object
- id: str¶
- name: str¶
- data: str¶
- requires_opt: bool = True¶
- class TrainerStepResult(step: int = 0, val_score: float = None, test_score: float = None, attempted_val_score: float = None, prompt: List[optim.types.PromptData] = None)[source]¶
Bases:
DataClass
- step: int = 0¶
- val_score: float = None¶
- test_score: float = None¶
- attempted_val_score: float = None¶
- prompt: List[PromptData] = None¶
- class TrainerValidateStats(max_score: float = 0.0, min_score: float = 0.0, mean_of_score: float = 0.0, std_of_score: float = 0.0)[source]¶
Bases:
object
A single evaluation of task pipeline response to a score in range [0, 1].
- max_score: float = 0.0¶
- min_score: float = 0.0¶
- mean_of_score: float = 0.0¶
- std_of_score: float = 0.0¶
- class TrainerResult(steps: List[int] = <factory>, val_scores: List[float] = <factory>, test_scores: List[float] = <factory>, step_results: List[optim.types.TrainerStepResult] = <factory>, effective_measure: Dict[str, Dict] = <factory>, validate_stats: optim.types.TrainerValidateStats = None, time_stamp: str = <factory>, total_time: float = 0.0, test_score: float = None, trainer_state: Dict[str, Any] = None)[source]¶
Bases:
DataClass
- steps: List[int]¶
- val_scores: List[float]¶
- test_scores: List[float]¶
- step_results: List[TrainerStepResult]¶
- effective_measure: Dict[str, Dict]¶
- validate_stats: TrainerValidateStats = None¶
- time_stamp: str¶
- total_time: float = 0.0¶
- test_score: float = None¶
- trainer_state: Dict[str, Any] = None¶