agent#
Submodules#
- class ReActAgent(tools: List[Callable | Callable[[...], Awaitable[Any]] | FunctionTool] = [], max_steps: int = 10, add_llm_as_fallback: bool = True, examples: List[FunctionExpression] = [], *, model_client: ModelClient, model_kwargs: Dict = {}, template: str | None = None)[source]#
Bases:
Component
ReActAgent uses generator as a planner that runs multiple and sequential functional call steps to generate the final response.
Users need to set up: - tools: a list of tools to use to complete the task. Each tool is a function or a function tool. - max_steps: the maximum number of steps the agent can take to complete the task. - use_llm_as_fallback: a boolean to decide whether to use an additional LLM model as a fallback tool to answer the query. - model_client: the model client to use to generate the response. - model_kwargs: the model kwargs to use to generate the response. - template: the template to use to generate the prompt. Default is DEFAULT_REACT_AGENT_SYSTEM_PROMPT.
For the generator, the default arguments are: (1) default prompt: DEFAULT_REACT_AGENT_SYSTEM_PROMPT (2) default output_processors: JsonParser
There are examples which is optional, a list of string examples in the prompt.
Example:
from core.openai_client import OpenAIClient from components.agent.react import ReActAgent from core.func_tool import FunctionTool # define the tools def multiply(a: int, b: int) -> int: '''Multiply two numbers.''' return a * b def add(a: int, b: int) -> int: '''Add two numbers.''' return a + b agent = ReActAgent( tools=[multiply, add], model_client=OpenAIClient(), model_kwargs={"model": "gpt-3.5-turbo"}, ) # Using examples: call_multiply = FunctionExpression.from_function( thought="I want to multiply 3 and 4.",
Reference: [1] https://arxiv.org/abs/2210.03629, published in Mar, 2023.