Function calls#

Tools are means LLM can use to interact with the world beyond of its internal knowledge. Technically speaking, retrievers are tools to help LLM to get more relevant context, and memory is a tool for LLM to carry out a conversation. Deciding when, which, and how to use a tool, and even to creating a tool is an agentic behavior: Function calls is a process of showing LLM a list of funciton definitions and prompt it to choose one or few of them. Many places use tools and function calls interchangably.

In this note we will covert function calls, including

  1. Function call walkthrough

  2. Overall design

  3. Function call in action

Quick Walkthrough#

Users might already know of OpenAI’s function call feature via its API (https://platform.openai.com/docs/guides/function-calling).

def get_current_weather(location, unit="fahrenheit"):
 """Get the current weather in a given location"""
 import json

 if "tokyo" in location.lower():
     return json.dumps({"location": "Tokyo", "temperature": "10", "unit": unit})
 elif "san francisco" in location.lower():
     return json.dumps(
         {"location": "San Francisco", "temperature": "72", "unit": unit}
     )
 elif "paris" in location.lower():
     return json.dumps({"location": "Paris", "temperature": "22", "unit": unit})
 else:
     return json.dumps({"location": location, "temperature": "unknown"})

For the above function, it is shown to LLM in the following format:

function_definition = {
    "type": "function",
    "function": {
        "name": "get_current_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and state, e.g. San Francisco, CA",
                },
                "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
            },
            "required": ["location"],
        },
    },
}

Then the API will respond with a list of function names and parameters:

Function(arguments='{"location": "San Francisco, CA"}', name='get_current_weather')

Then the output will need to be parsed into arguments which are then passed to the function:

function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
    location=function_args.get("location"),
    unit=function_args.get("unit"),
)

Scope and Design#

Even with API, users have to (1) create the function definition, (2) Parse the response, (3) Execute the function. What is missing in using API is: (1) How the function definitions are shown to LLM, (2) How the output format is instructured.

AdalFlow will provide built-in capabilities to do function calls simplily via prompt without relying on the tools API.

Design Goals

Asking LLM to call a function with keyword arguments is the simplest way of achieving the function call. But it is limiting:

  1. What if the argument value is a more complicated data structure?

  2. What if you want to use a variable as an argument?

AdalFlow will also provide FunctionExpression where calling a function is asking LLM to write the code snippet of the function call directly:

'get_current_weather("San Francisco, CA", unit="celsius")'

This is not only more flexible, but also it is also a more efficient/compact way to call a function.

Data Models

We have four DataClass models: FunctionDefinition, Function, FunctionExpression, and FunctionOutput to handle function calls.

These classes not only help with data structuring but also by being a subclass of DataClass, it can be easily used in the prompt. Function has three important attributes: name, args, and kwargs for the function name, positional arguments and keyword arguments. FunctionExpression only has one action for the function call expression. Both can be used to format the output in the prompt. We will demonstrate how to use it later.

Components

We have two components: FunctionTool and ToolManager to streamline the lifecyle of (1) creating the function definition (2) formatting the prompt with the definitions and output format (3) parsing the response (4) executing the function.

FunctionTool is a container of a single function. It handles the function definition and executing of the function. It supports both sync and async functions. ToolManager manages all tools. And it handles the execution and context_map that is used to parse the functions sercurely.

ToolManager is simplified way to do function calls.

Attribute/Method

Description

Attributes

tools

A list of tools managed by ToolManager. Each tool is an instance or a derivative of FunctionTool.

context

A dictionary combining tool definitions and additional context, used for executing function expressions.

Methods

__init__

Initializes a new ToolManager instance with tools and additional context. Tool can be FunctionTool or any function.

yaml_definitions

Returns the YAML definitions of all tools managed by ToolManager.

json_definitions

Returns the JSON definitions of all tools managed by ToolManager.

function_definitions

Returns a list of function definitions for all tools.

parse_func_expr

Parses a FunctionExpression and returns a Function object ready for execution.

execute_func

Executes a given Function object and returns its output wrapped in FunctionOutput. Support both sync and async functions.

execute_func_expr

Parses and executes a FunctionExpression directly, returning the execution result as FunctionOutput. Support both sync and async functions.

execute_func_expr_via_sandbox

Execute the function expression via sandbox. Only support sync functions.

execute_func_expr_via_eval

Execute the function expression via eval. Only support sync functions.

Function Call in Action#

We will use the following functions as examples across this note:

from dataclasses import dataclass
import numpy as np
import time
import asyncio


def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    time.sleep(1)
    return a * b


def add(a: int, b: int) -> int:
    """Add two numbers."""
    time.sleep(1)
    return a + b


async def divide(a: float, b: float) -> float:
    """Divide two numbers."""
    await asyncio.sleep(1)
    return float(a) / b


async def search(query: str) -> List[str]:
    """Search for query and return a list of results."""
    await asyncio.sleep(1)
    return ["result1" + query, "result2" + query]


def numpy_sum(arr: np.ndarray) -> float:
    """Sum the elements of an array."""
    return np.sum(arr)


x = 2

@dataclass
class Point:
    x: int
    y: int


def add_points(p1: Point, p2: Point) -> Point:
    return Point(p1.x + p2.x, p1.y + p2.y)

We delibrately cover both async and sync, examples of using variables and more complicated data structures as arguments. We will demonstrate the structure and how to use each data model and component to call the above functions in different ways.

1. FunctionTool#

First, let’s see how we help describe the function to LLM.

Use the above functions as examples, FunctionTool will generate the FunctionDefinition for each function automatically if the user did not pass it in.

from adalflow.core.func_tool import FunctionTool

functions =[multiply, add, divide, search, numpy_sum, add_points]
tools = [
    FunctionTool(fn=fn) for fn in functions
]
for tool in tools:
    print(tool)

The printout shows three attributes for each function: fn, _is_async, and definition.

FunctionTool(fn: <function multiply at 0x14d9d3f60>, async: False, definition: FunctionDefinition(func_name='multiply', func_desc='multiply(a: int, b: int) -> int\nMultiply two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']}))
FunctionTool(fn: <function add at 0x14d9e4040>, async: False, definition: FunctionDefinition(func_name='add', func_desc='add(a: int, b: int) -> int\nAdd two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']}))
FunctionTool(fn: <function divide at 0x14d9e40e0>, async: True, definition: FunctionDefinition(func_name='divide', func_desc='divide(a: float, b: float) -> float\nDivide two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'float'}, 'b': {'type': 'float'}}, 'required': ['a', 'b']}))
FunctionTool(fn: <function search at 0x14d9e4180>, async: True, definition: FunctionDefinition(func_name='search', func_desc='search(query: str) -> List[str]\nSearch for query and return a list of results.', func_parameters={'type': 'object', 'properties': {'query': {'type': 'str'}}, 'required': ['query']}))
FunctionTool(fn: <function numpy_sum at 0x14d9e4220>, async: False, definition: FunctionDefinition(func_name='numpy_sum', func_desc='numpy_sum(arr: numpy.ndarray) -> float\nSum the elements of an array.', func_parameters={'type': 'object', 'properties': {'arr': {'type': 'ndarray'}}, 'required': ['arr']}))
FunctionTool(fn: <function add_points at 0x14d9e4360>, async: False, definition: FunctionDefinition(func_name='add_points', func_desc='add_points(p1: __main__.Point, p2: __main__.Point) -> __main__.Point\nNone', func_parameters={'type': 'object', 'properties': {'p1': {'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}, 'p2': {'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}}, 'required': ['p1', 'p2']}))

View the definition for add_point and also the get_current_weather function in dict format:

print(tools[-2].definition.to_dict())

The output will be:

{
    "func_name": "numpy_sum",
    "func_desc": "numpy_sum(arr: numpy.ndarray) -> float\nSum the elements of an array.",
    "func_parameters": {
        "type": "object",
        "properties": {"arr": {"type": "ndarray"}},
        "required": ["arr"],
        },
}

Using to_json and to_yaml will directly get us the string that can be fed into the prompt. And we prefer to use yaml format here as it is more token efficient:

We choose to describe the function not only with the docstring which is Sum the elements of an array. but also with the function signature which is numpy_sum(arr: numpy.ndarray) -> float. This will give the LLM a view of the function at the code level and it helps with the function call.

Note

Users should better use type hints and a good docstring to help LLM understand the function better.

In comparison, here is our definition for get_current_weather:

{
    "func_name": "get_current_weather",
    "func_desc": "get_current_weather(location, unit='fahrenheit')\nGet the current weather in a given location",
    "func_parameters": {
        "type": "object",
        "properties": {
            "location": {"type": "Any"},
            "unit": {"type": "Any", "default": "fahrenheit"},
        },
        "required": ["location"],
    },
}

To execute function using function names requres us to manage a function map. Instead of using the raw function, we use FunctionTool instead for this context map.

context_map = {tool.definition.func_name: tool for tool in tools}

To execute a function, we can do:

function_name = "add"
function_to_call = context_map[function_name]
function_args = {"a": 1, "b": 2}
function_response = function_to_call.call(**function_args)

If we use async function, we can use acall. execute is a wrapper that you can call a function in both sync and async way regardless of the function type. Check out the API documentation for more details.

2. ToolManager#

Using ToolManager on all the above function:

from adalflow.core.tool_manager import ToolManager

tool_manager = ToolManager(tools=functions)
print(tool_manager)

The tool manager can take both FunctionTool, function and async function. The printout:

ToolManager(Tools: [FunctionTool(fn: <function multiply at 0x105e3b920>, async: False, definition: FunctionDefinition(func_name='multiply', func_desc='multiply(a: int, b: int) -> int\nMultiply two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']})), FunctionTool(fn: <function add at 0x105e3bc40>, async: False, definition: FunctionDefinition(func_name='add', func_desc='add(a: int, b: int) -> int\nAdd two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']})), FunctionTool(fn: <function divide at 0x104970220>, async: True, definition: FunctionDefinition(func_name='divide', func_desc='divide(a: float, b: float) -> float\nDivide two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'float'}, 'b': {'type': 'float'}}, 'required': ['a', 'b']})), FunctionTool(fn: <function search at 0x104970400>, async: True, definition: FunctionDefinition(func_name='search', func_desc='search(query: str) -> List[str]\nSearch for query and return a list of results.', func_parameters={'type': 'object', 'properties': {'query': {'type': 'str'}}, 'required': ['query']})), FunctionTool(fn: <function numpy_sum at 0x1062a2840>, async: False, definition: FunctionDefinition(func_name='numpy_sum', func_desc='numpy_sum(arr: numpy.ndarray) -> float\nSum the elements of an array.', func_parameters={'type': 'object', 'properties': {'arr': {'type': 'ndarray'}}, 'required': ['arr']})), FunctionTool(fn: <function add_points at 0x106d691c0>, async: False, definition: FunctionDefinition(func_name='add_points', func_desc='add_points(p1: __main__.Point, p2: __main__.Point) -> __main__.Point\nNone', func_parameters={'type': 'object', 'properties': {'p1': {'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}, 'p2': {'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}}, 'required': ['p1', 'p2']}))], Additional Context: {})

We will show more how it can be used in the next section.

3. Function Call end-to-end#

Now, let us add prompt and start to do function calls via LLMs. We use the following prompt to do a single function call.

template = r"""<SYS>You have these tools available:
{% if tools %}
<TOOLS>
{% for tool in tools %}
{{ loop.index }}.
{{tool}}
------------------------
{% endfor %}
</TOOLS>
{% endif %}
<OUTPUT_FORMAT>
{{output_format_str}}
</OUTPUT_FORMAT>
</SYS>
User: {{input_str}}
You:
"""

Pass tools in the prompt

We use yaml format here and show an example with less tools.

from adalflow.core.prompt_builder import Prompt

prompt = Prompt(template=template)
small_tool_manager = ToolManager(tools=tools[:2])

renered_prompt = prompt(tools=small_tool_manager.yaml_definitions)
print(renered_prompt)

The output is:

<SYS>You have these tools available:
<TOOLS>
1.
func_name: multiply
func_desc: 'multiply(a: int, b: int) -> int

Multiply two numbers.'
func_parameters:
type: object
properties:
    a:
    type: int
    b:
    type: int
required:
- a
- b

------------------------
2.
func_name: add
func_desc: 'add(a: int, b: int) -> int

Add two numbers.'
func_parameters:
type: object
properties:
    a:
    type: int
    b:
    type: int
required:
- a
- b

------------------------
</TOOLS>
<OUTPUT_FORMAT>
None
</OUTPUT_FORMAT>
</SYS>
User: None
You:

Pass the output format

We have two ways to instruct LLM to call the function:

  1. Using the function name and arguments, we will leverage Function as LLM’s output data type.

from adalflow.core.types import Function

output_data_class = Function
output_format_str = output_data_class.to_json_signature(exclude=["thought", "args"])

renered_prompt= prompt(output_format_str=output_format_str)
print(renered_prompt)

We execluded both the thought and args as it is easier to use kwargs to represent the arguments. The output is:

<SYS>You have these tools available:
<OUTPUT_FORMAT>
{
    "name": "The name of the function (str) (optional)",
    "kwargs": "The keyword arguments of the function (Optional) (optional)"
}
</OUTPUT_FORMAT>
</SYS>
User: None
You:
  1. Using the function call expression for which we will use FunctionExpression.

from adalflow.core.types import FunctionExpression

output_data_class = FunctionExpression
output_format_str = output_data_class.to_json_signature(exclude=["thought"])
print(prompt(output_format_str=output_format_str))

The output is:

<SYS>You have these tools available:
<OUTPUT_FORMAT>
{
    "action": "FuncName(<kwargs>)                 Valid function call expression.                 Example: \"FuncName(a=1, b=2)\"                 Follow the data type specified in the function parameters.                e.g. for Type object with x,y properties, use \"ObjectType(x=1, y=2) (str) (required)"
}
</OUTPUT_FORMAT>
</SYS>
User: None
You:

We will use components.output_parsers.outputs.JsonOutputParser to streamline the formatting of our output data type.

from adalflow.components.output_parsers import JsonOutputParser

func_parser = JsonOutputParser(data_class=Function, exclude_fields=["thought", "args"])
instructions = func_parser.format_instructions()
print(instructions)

The output is:

Your output should be formatted as a standard JSON instance with the following schema:
```
{
    "name": "The name of the function (str) (optional)",
    "kwargs": "The keyword arguments of the function (Optional) (optional)"
}
```
-Make sure to always enclose the JSON output in triple backticks (```). Please do not add anything other than valid JSON output!
-Use double quotes for the keys and string values.
-Follow the JSON formatting conventions.

Function Output Format#

Now, let’s prepare our generator with the above prompt, Function data class, and JsonOutputParser.

from adalflow.core.generator import Generator
from adalflow.core.types import ModelClientType

model_kwargs = {"model": "gpt-3.5-turbo"}
prompt_kwargs = {
    "tools": tool_manager.yaml_definitions,
    "output_format_str": func_parser.format_instructions(),
}
generator = Generator(
    model_client=ModelClientType.OPENAI(),
    model_kwargs=model_kwargs,
    template=template,
    prompt_kwargs=prompt_kwargs,
    output_processors=func_parser,
)

Run Queries

We will use Function.from_dict to get the final output type from the json object. Here we use core.tool_manager.ToolManager.execute_func() to execute it directly.

queries = [
    "add 2 and 3",
    "search for something",
    "add points (1, 2) and (3, 4)",
    "sum numpy array with arr = np.array([[1, 2], [3, 4]])",
    "multiply 2 with local variable x",
    "divide 2 by 3",
    "Add 5 to variable y",
]

for idx, query in enumerate(queries):
    prompt_kwargs = {"input_str": query}
    print(f"\n{idx} Query: {query}")
    print(f"{'-'*50}")
    try:
        result = generator(prompt_kwargs=prompt_kwargs)
        # print(f"LLM raw output: {result.raw_response}")
        func = Function.from_dict(result.data)
        print(f"Function: {func}")
        func_output = tool_manager.execute_func(func)
        print(f"Function output: {func_output}")
    except Exception as e:
        print(
            f"Failed to execute the function for query: {query}, func: {result.data}, error: {e}"
        )

From the output shown below, we get valide Function parsed as output for all queries. However, we see it failed three function execution: (1)function add_points due to its argument type is a data class, and multiply and the last add due to it is difficult to represent the local variable x and y in the function call.

0 Query: add 2 and 3
--------------------------------------------------
Function: Function(thought=None, name='add', args=[], kwargs={'a': 2, 'b': 3})
Function output: FunctionOutput(name='add', input=Function(thought=None, name='add', args=(), kwargs={'a': 2, 'b': 3}), parsed_input=None, output=5, error=None)

1 Query: search for something
--------------------------------------------------
Function: Function(thought=None, name='search', args=[], kwargs={'query': 'something'})
Function output: FunctionOutput(name='search', input=Function(thought=None, name='search', args=(), kwargs={'query': 'something'}), parsed_input=None, output=['result1something', 'result2something'], error=None)

2 Query: add points (1, 2) and (3, 4)
--------------------------------------------------
Function: Function(thought=None, name='add_points', args=[], kwargs={'p1': {'x': 1, 'y': 2}, 'p2': {'x': 3, 'y': 4}})
Error at calling <function add_points at 0x117b98360>: 'dict' object has no attribute 'x'
Function output: FunctionOutput(name='add_points', input=Function(thought=None, name='add_points', args=(), kwargs={'p1': {'x': 1, 'y': 2}, 'p2': {'x': 3, 'y': 4}}), parsed_input=None, output=None, error="'dict' object has no attribute 'x'")

3 Query: sum numpy array with arr = np.array([[1, 2], [3, 4]])
--------------------------------------------------
Function: Function(thought=None, name='numpy_sum', args=[], kwargs={'arr': [[1, 2], [3, 4]]})
Function output: FunctionOutput(name='numpy_sum', input=Function(thought=None, name='numpy_sum', args=(), kwargs={'arr': [[1, 2], [3, 4]]}), parsed_input=None, output=10, error=None)

4 Query: multiply 2 with local variable x
--------------------------------------------------
Function: Function(thought=None, name='multiply', args=[], kwargs={'a': 2, 'b': 'x'})
Function output: FunctionOutput(name='multiply', input=Function(thought=None, name='multiply', args=(), kwargs={'a': 2, 'b': 'x'}), parsed_input=None, output='xx', error=None)

5 Query: divide 2 by 3
--------------------------------------------------
Function: Function(thought=None, name='divide', args=[], kwargs={'a': 2.0, 'b': 3.0})
Function output: FunctionOutput(name='divide', input=Function(thought=None, name='divide', args=(), kwargs={'a': 2.0, 'b': 3.0}), parsed_input=None, output=0.6666666666666666, error=None)

6 Query: Add 5 to variable y
--------------------------------------------------
Function: Function(thought=None, name='add', args=[], kwargs={'a': 5, 'b': 'y'})
Error at calling <function add at 0x11742eca0>: unsupported operand type(s) for +: 'int' and 'str'
Function output: FunctionOutput(name='add', input=Function(thought=None, name='add', args=(), kwargs={'a': 5, 'b': 'y'}), parsed_input=None, output=None, error="unsupported operand type(s) for +: 'int' and 'str'")

Note

If users prefer to use Function, to incress the success rate, make sure your function arguments are dict based for class object. You can always convert it to a class from a dict.

FunctionExpression Output Format#

We will adapt the above code easily using tool manager to use FunctionExpression as the output format. We will use FunctionExpression this time in the parser. And we added the necessary context to handle the local variable x, y, and np.array.

tool_manager = ToolManager(
    tools=functions,
    additional_context={"x": x, "y": 0, "np.array": np.array, "np": np},
)
func_parser = JsonOutputParser(data_class=FunctionExpression)

Additionally, we can also pass the additional_context to LLM using the follow prompt after the <TOOLS>

context = r"""<CONTEXT>
Your function expression also have access to these context:
{{context_str}}
</CONTEXT>
"""

This time, let us try to execute all function concurrently and treating them all as async functions.

async def run_async_function_call(self, generator, tool_manager):
    answers = []
    start_time = time.time()
    tasks = []
    for idx, query in enumerate(queries):
        tasks.append(self.process_query(idx, query, generator, tool_manager))

    results = await asyncio.gather(*tasks)
    answers.extend(results)
    end_time = time.time()
    print(f"Total time taken: {end_time - start_time :.2f} seconds")
    return answers

async def process_query(self, idx, query, generator, tool_manager: ToolManager):
    print(f"\n{idx} Query: {query}")
    print(f"{'-'*50}")
    try:
        result = generator(prompt_kwargs={"input_str": query})
        func_expr = FunctionExpression.from_dict(result.data)
        print(f"Function_expr: {func_expr}")
        func = tool_manager.parse_func_expr(func_expr)
        func_output = await tool_manager.execute_func_async(func)
        print(f"Function output: {func_output}")
        return func_output
    except Exception as e:
        print(
            f"Failed to execute the function for query: {query}, func: {result.data}, error: {e}"
        )
        return None

In this case, we used core.tool_manager.ToolManager.parse_func_expr() and core.tool_manager.ToolManager.execute_func() to execute the function. Or we can directly use core.tool_manager.ToolManager.execute_func_expr() to execute the function expression. Both are equivalent.

From the output shown below, this time we get all function calls executed successfully.

0 Query: add 2 and 3
--------------------------------------------------
Function_expr: FunctionExpression(thought=None, action='add(a=2, b=3)')

1 Query: search for something
--------------------------------------------------
Function_expr: FunctionExpression(thought=None, action='search(query="something")')

2 Query: add points (1, 2) and (3, 4)
--------------------------------------------------
Function_expr: FunctionExpression(thought=None, action='add_points(p1=Point(x=1, y=2), p2=Point(x=3, y=4))')

3 Query: sum numpy array with arr = np.array([[1, 2], [3, 4]])
--------------------------------------------------
Function_expr: FunctionExpression(thought=None, action='numpy_sum(arr=np.array([[1, 2], [3, 4]]))')

4 Query: multiply 2 with local variable x
--------------------------------------------------
Function_expr: FunctionExpression(thought=None, action='multiply(a=2, b=2)')

5 Query: divide 2 by 3
--------------------------------------------------
Function_expr: FunctionExpression(thought=None, action='divide(a=2.0, b=3.0)')

6 Query: Add 5 to variable y
--------------------------------------------------
Function_expr: FunctionExpression(thought=None, action='add(a=0, b=5)')
Function output: FunctionOutput(name='add_points', input=Function(thought=None, name='add_points', args=(), kwargs={'p1': Point(x=1, y=2), 'p2': Point(x=3, y=4)}), parsed_input=None, output=Point(x=4, y=6), error=None)
Function output: FunctionOutput(name='numpy_sum', input=Function(thought=None, name='numpy_sum', args=(), kwargs={'arr': array([[1, 2],
    [3, 4]])}), parsed_input=None, output=10, error=None)
Function output: FunctionOutput(name='add', input=Function(thought=None, name='add', args=(), kwargs={'a': 2, 'b': 3}), parsed_input=None, output=5, error=None)
Function output: FunctionOutput(name='multiply', input=Function(thought=None, name='multiply', args=(), kwargs={'a': 2, 'b': 2}), parsed_input=None, output=4, error=None)
Function output: FunctionOutput(name='search', input=Function(thought=None, name='search', args=(), kwargs={'query': 'something'}), parsed_input=None, output=['result1something', 'result2something'], error=None)
Function output: FunctionOutput(name='divide', input=Function(thought=None, name='divide', args=(), kwargs={'a': 2.0, 'b': 3.0}), parsed_input=None, output=0.6666666666666666, error=None)
Function output: FunctionOutput(name='add', input=Function(thought=None, name='add', args=(), kwargs={'a': 0, 'b': 5}), parsed_input=None, output=5, error=None)

Parallel Function Calls#

We will slightly adapt the output format instruction to get it output json array, which can still be parsed with a json parser.

multple_function_call_template = r"""<SYS>You have these tools available:
{% if tools %}
<TOOLS>
{% for tool in tools %}
{{ loop.index }}.
{{tool}}
------------------------
{% endfor %}
</TOOLS>
{% endif %}
<OUTPUT_FORMAT>
Here is how you call one function.
{{output_format_str}}
-Always return a List using `[]` of the above JSON objects, even if its just one item.
</OUTPUT_FORMAT>
<SYS>
{{input_str}}
You:
"""

As LLM has problem calling add_point, we will add one example and we will generate it with core.types.FunctionExpression.from_function(). We will update our outputparser to use the example:

example = FunctionExpression.from_function(
        func=add_points, p1=Point(x=1, y=2), p2=Point(x=3, y=4)
)
func_parser = JsonOutputParser(
        data_class=FunctionExpression, examples=[example]
)

Here is the updated output format in the prompt:

<OUTPUT_FORMAT>
Here is how you call one function.
Your output should be formatted as a standard JSON instance with the following schema:
```
{
    "action": "FuncName(<kwargs>)                 Valid function call expression.                 Example: \"FuncName(a=1, b=2)\"                 Follow the data type specified in the function parameters.                e.g. for Type object with x,y properties, use \"ObjectType(x=1, y=2) (str) (required)"
}
```
Here is an example:
```
{
    "action": "add_points(p1=Point(x=1, y=2), p2=Point(x=3, y=4))"
}
```
-Make sure to always enclose the JSON output in triple backticks (```). Please do not add anything other than valid JSON output!
-Use double quotes for the keys and string values.
-Follow the JSON formatting conventions.
Awlays return a List using `[]` of the above JSON objects. You can have length of 1 or more.
Do not call multiple functions in one action field.
</OUTPUT_FORMAT>

This case, we will show the response from using execute_func_expr_via_sandbox to execute the function expression.

for idx in range(0, len(queries), 2):
    query = " and ".join(queries[idx : idx + 2])
    prompt_kwargs = {"input_str": query}
    print(f"\n{idx} Query: {query}")
    print(f"{'-'*50}")
    try:
        result = generator(prompt_kwargs=prompt_kwargs)
        # print(f"LLM raw output: {result.raw_response}")
        func_expr: List[FunctionExpression] = [
            FunctionExpression.from_dict(item) for item in result.data
        ]
        print(f"Function_expr: {func_expr}")
        for expr in func_expr:
            func_output = tool_manager.execute_func_expr_via_sandbox(expr)
            print(f"Function output: {func_output}")
    except Exception as e:
        print(
            f"Failed to execute the function for query: {query}, func: {result.data}, error: {e}"
        )

By using an example to help with calling add_point, we can now successfully execute all function calls.

0 Query: add 2 and 3 and search for something
--------------------------------------------------
Function_expr: [FunctionExpression(thought=None, action='add(a=2, b=3)'), FunctionExpression(thought=None, action='search(query="something")')]
Function output: FunctionOutput(name='add(a=2, b=3)', input=FunctionExpression(thought=None, action='add(a=2, b=3)'), parsed_input=None, output=FunctionOutput(name='add', input=Function(thought=None, name='add', args=(), kwargs={'a': 2, 'b': 3}), parsed_input=None, output=5, error=None), error=None)
Function output: FunctionOutput(name='search(query="something")', input=FunctionExpression(thought=None, action='search(query="something")'), parsed_input=None, output=FunctionOutput(name='search', input=Function(thought=None, name='search', args=(), kwargs={'query': 'something'}), parsed_input=None, output=['result1something', 'result2something'], error=None), error=None)

2 Query: add points (1, 2) and (3, 4) and sum numpy array with arr = np.array([[1, 2], [3, 4]])
--------------------------------------------------
Function_expr: [FunctionExpression(thought=None, action='add_points(p1=Point(x=1, y=2), p2=Point(x=3, y=4))'), FunctionExpression(thought=None, action='numpy_sum(arr=[[1, 2], [3, 4]])')]
Function output: FunctionOutput(name='add_points(p1=Point(x=1, y=2), p2=Point(x=3, y=4))', input=FunctionExpression(thought=None, action='add_points(p1=Point(x=1, y=2), p2=Point(x=3, y=4))'), parsed_input=None, output=FunctionOutput(name='add_points', input=Function(thought=None, name='add_points', args=(), kwargs={'p1': Point(x=1, y=2), 'p2': Point(x=3, y=4)}), parsed_input=None, output=Point(x=4, y=6), error=None), error=None)
Function output: FunctionOutput(name='numpy_sum(arr=[[1, 2], [3, 4]])', input=FunctionExpression(thought=None, action='numpy_sum(arr=[[1, 2], [3, 4]])'), parsed_input=None, output=FunctionOutput(name='numpy_sum', input=Function(thought=None, name='numpy_sum', args=(), kwargs={'arr': [[1, 2], [3, 4]]}), parsed_input=None, output=10, error=None), error=None)

4 Query: multiply 2 with local variable x and divide 2 by 3
--------------------------------------------------
Function_expr: [FunctionExpression(thought=None, action='multiply(a=2, b=x)'), FunctionExpression(thought=None, action='divide(a=2.0, b=3.0)')]
Function output: FunctionOutput(name='multiply(a=2, b=x)', input=FunctionExpression(thought=None, action='multiply(a=2, b=x)'), parsed_input=None, output=FunctionOutput(name='multiply', input=Function(thought=None, name='multiply', args=(), kwargs={'a': 2, 'b': 2}), parsed_input=None, output=4, error=None), error=None)
Function output: FunctionOutput(name='divide(a=2.0, b=3.0)', input=FunctionExpression(thought=None, action='divide(a=2.0, b=3.0)'), parsed_input=None, output=FunctionOutput(name='divide', input=Function(thought=None, name='divide', args=(), kwargs={'a': 2.0, 'b': 3.0}), parsed_input=None, output=0.6666666666666666, error=None), error=None)

6 Query: Add 5 to variable y
--------------------------------------------------
Function_expr: [FunctionExpression(thought=None, action='add(a=y, b=5)')]
Function output: FunctionOutput(name='add(a=y, b=5)', input=FunctionExpression(thought=None, action='add(a=y, b=5)'), parsed_input=None, output=FunctionOutput(name='add', input=Function(thought=None, name='add', args=(), kwargs={'a': 0, 'b': 5}), parsed_input=None, output=5, error=None), error=None)

API References

  • core.types.FunctionDefinition

  • core.types.Function

  • core.types.FunctionExpression

  • core.types.FunctionOutput

  • core.func_tool.FunctionTool

  • core.tool_manager.ToolManager

  • core.functional.get_fun_schema()

  • core.functional.parse_function_call_expr()

  • core.functional.sandbox_execute()

  • core.functional.generate_function_call_expression_from_callable()