transformers_client#
Huggingface transformers ModelClient integration.
Functions
|
|
Classes
|
Local model SDK for transformers. |
|
Local model SDK for transformers LLM. |
|
Local model SDK for a reranker model using transformers. |
|
LightRAG API client for transformers. |
- class TransformerEmbedder(model_name: str | None = 'thenlper/gte-base')[source]#
Bases:
object
Local model SDK for transformers.
There are two ways to run transformers: (1) model and then run model inference (2) Pipeline and then run pipeline inference
This file demonstrates how to (1) create a torch model inference component: TransformerEmbedder which equalize to OpenAI(), the SyncAPIClient (2) Convert this model inference component to LightRAG API client: TransformersClient
The is now just an exmplary component that initialize a certain model from transformers and run inference on it. It is not tested on all transformer models yet. It might be necessary to write one for each model.
References: - transformers: https://huggingface.co/docs/transformers/en/index - thenlper/gte-base model:https://huggingface.co/thenlper/gte-base
- models: Dict[str, type] = {}#
- class TransformerReranker(model_name: str | None = 'BAAI/bge-reranker-base')[source]#
Bases:
object
Local model SDK for a reranker model using transformers.
References: - model: https://huggingface.co/BAAI/bge-reranker-base - paper: https://arxiv.org/abs/2309.07597
note: If you are using Macbook M1 series chips, you need to ensure
torch.device("mps")
is set.- models: Dict[str, type] = {}#
- class TransformerLLM(model_name: str | None = None)[source]#
Bases:
object
Local model SDK for transformers LLM.
Note
This inference component is only specific to the HuggingFaceH4/zephyr-7b-beta model.
The example raw output: # <|system|> # You are a friendly chatbot who always responds in the style of a pirate.</s> # <|user|> # How many helicopters can a human eat in one sitting?</s> # <|assistant|> # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
References: - model: https://huggingface.co/HuggingFaceH4/zephyr-7b-beta - https://huggingface.co/google/gemma-2b - https://huggingface.co/google/gemma-2-2b
- models: Dict[str, type] = {}#
- tokenizer: Dict[str, type] = {}#
- model_to_init_func = {'HuggingFaceH4/zephyr-7b-beta': 'use_pipeline', 'google/gemma-2-2b': 'use_pipeline'}#
- class TransformersClient(model_name: str | None = None)[source]#
Bases:
ModelClient
LightRAG API client for transformers.
Use: ``ls ~/.cache/huggingface/hub `` to see the cached models.
Some modeles are gated, you will need to their page to get the access token. Find how to apply tokens here: https://huggingface.co/docs/hub/security-tokens Once you have a token and have access, put the token in the environment variable HF_TOKEN.
- support_models = {'BAAI/bge-reranker-base': {'type': ModelType.RERANKER}, 'HuggingFaceH4/zephyr-7b-beta': {'type': ModelType.LLM}, 'google/gemma-2-2b': {'type': ModelType.LLM}, 'thenlper/gte-base': {'type': ModelType.EMBEDDER}}#
- set_llm_client(llm_client: object)[source]#
Allow user to pass a custom llm client. Here is an example of a custom llm client:
Ensure you have parse_chat_completion and __call__ methods which will be applied to api_kwargs specified in transform_client.call().
class CustomizeLLM: def __init__(self) -> None: pass def parse_chat_completion(self, completion: Any) -> str: return completion def __call__(self, messages: Sequence[Dict[str, str]], model: str, **kwargs): from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "deepseek-ai/deepseek-coder-1.3b-instruct", trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( "deepseek-ai/deepseek-coder-1.3b-instruct", trust_remote_code=True, torch_dtype=torch.bfloat16, ).to(get_device()) messages = [ {"role": "user", "content": "write a quick sort algorithm in python."} ] inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) # tokenizer.eos_token_id is the id of <|EOT|> token outputs = model.generate( inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) print( tokenizer.decode(outputs[0][len(inputs[0]) :], skip_special_tokens=True) ) decoded_outputs = [] for output in outputs: decoded_outputs.append( tokenizer.decode(output[len(inputs[0]) :], skip_special_tokens=True) ) return decoded_outputs llm_client = CustomizeLLM() transformer_client.set_llm_client(llm_client) # use in the generator generator = Generator( model_client=transformer_client, model_kwargs=model_kwargs, prompt_kwargs=prompt_kwargs, ...)
- parse_embedding_response(response: Any) EmbedderOutput [source]#
Parse the embedding response to a structure AdalFlow components can understand.
- call(api_kwargs: Dict = {}, model_type: ModelType = ModelType.UNDEFINED)[source]#
Subclass use this to call the API with the sync client. model_type: this decides which API, such as chat.completions or embeddings for OpenAI. api_kwargs: all the arguments that the API call needs, subclass should implement this method.
Additionally in subclass you can implement the error handling and retry logic here. See OpenAIClient for example.
- convert_inputs_to_api_kwargs(input: Any, model_kwargs: dict = {}, model_type: ModelType = ModelType.UNDEFINED) dict [source]#
Bridge the Component’s standard input and model_kwargs into API-specific format, the api_kwargs that will be used in _call and _acall methods.
All types of models supported by this particular provider should be handled here. :param input: input to the model. Defaults to None. :type input: Optional[Any], optional :param model_kwargs: model kwargs :type model_kwargs: Dict :param model_type: model type :type model_type: ModelType