runner¶
Classes
|
|
|
A runner class that executes an Agent instance with multi-step execution. |
- class Runner(agent: Agent, **kwargs)[source]¶
Bases:
Component
A runner class that executes an Agent instance with multi-step execution.
It internally maintains a planner LLM and an executor and adds a LLM call to the executor as a tool for the planner.
The output to the planner agent call is expected to be a Function object. The planner iterates through at most max_steps unless the planner sets the action to “finish” then the planner returns the final response.
If the user optionally specifies the output_type then the Runner parses the Function object to the output_type.
- config¶
Configuration for the runner
- Type:
RunnerConfig
- max_steps¶
Maximum number of steps to execute
- Type:
int
- call(prompt_kwargs: Dict[str, Any], model_kwargs: Dict[str, Any] | None = None, use_cache: bool | None = None, id: str | None = None) Tuple[List[StepOutput], T] [source]¶
Execute the planner synchronously for multiple steps with function calling support.
At the last step the action should be set to “finish” instead which terminates the sequence
- Parameters:
prompt_kwargs – Dictionary of prompt arguments for the generator
model_kwargs – Optional model parameters to override defaults
use_cache – Whether to use cached results if available
id – Optional unique identifier for the request
- Returns:
List of step history (StepOutput objects)
Final processed output of type specified in self.answer_data_type
- Return type:
Tuple containing
- async acall(prompt_kwargs: Dict[str, Any], model_kwargs: Dict[str, Any] | None = None, use_cache: bool | None = None, id: str | None = None) Tuple[List[GeneratorOutput], T] [source]¶
Execute the planner asynchronously for multiple steps with function calling support.
At the last step the action should be set to “finish” instead which terminates the sequence
- Parameters:
prompt_kwargs – Dictionary of prompt arguments for the generator
model_kwargs – Optional model parameters to override defaults
use_cache – Whether to use cached results if available
id – Optional unique identifier for the request
- Returns:
List of step history (GeneratorOutput objects)
Final processed output
- Return type:
Tuple containing
- astream(prompt_kwargs: Dict[str, Any], model_kwargs: Dict[str, Any] | None = None, use_cache: bool | None = None, id: str | None = None)[source]¶
- async impl_astream(prompt_kwargs: Dict[str, Any], model_kwargs: Dict[str, Any] | None = None, use_cache: bool | None = None, id: str | None = None) Tuple[List[GeneratorOutput], T] [source]¶
Execute the planner asynchronously for multiple steps with function calling support.
At the last step the action should be set to “finish” instead which terminates the sequence
- Parameters:
prompt_kwargs – Dictionary of prompt arguments for the generator
model_kwargs – Optional model parameters to override defaults
use_cache – Whether to use cached results if available
id – Optional unique identifier for the request
- Returns:
List of step history (GeneratorOutput objects)
Final processed output
- Return type:
Tuple containing