"""Text-grad optimizer and prompts. Also combined methods from ORPO llm optimizer.
With the auto-diff gradients, it made it possible to optimize any prompt parameter in a task pipeline.
https://arxiv.org/abs/2309.03409
Source code: https://github.com/google-deepmind/opro
"""
from typing import List, Dict, TYPE_CHECKING, Optional, Any
import logging
import re
from dataclasses import field, dataclass
from adalflow.optim.optimizer import TextOptimizer, ParamsT
from adalflow.optim.text_grad.backend_engine_prompt import VARIABLE_AND_PEERS_INFO
from adalflow.optim.parameter import Parameter
from adalflow.core.base_data_class import DataClass
from adalflow.utils.logger import printc
from adalflow.core.types import GeneratorOutput
if TYPE_CHECKING:
from adalflow.core import ModelClient
log = logging.getLogger(__name__)
[docs]
@dataclass
class HistoryPrompt(DataClass):
id: str
value: str
eval_score: float
method: str = field(default=None)
reasoning: str = field(default=None)
####################################################################################################
# Textual Gradient Descent Optimizer
####################################################################################################
# TODO: make the uesr message to task instruction
TEXT_GRAD_DESC_TEMPLATE = r"""<START_OF_SYSTEM_PROMPT>
{{optimizer_system_prompt}}
<END_OF_SYSTEM_PROMPT>
<START_OF_USER_MESSAGE>
You are {{steps}} steps since your last improvement.
Update the value more rapidly when steps are larger than 3.
{# Variable and peers info #}
<START_OF_VARIABLE_AND_PEERS_INFO>
{{variable_and_peers_info}}
<END_OF_VARIABLE_AND_PEERS_INFO>
{# system trainable variables #}
{% if system_variables %}
<START_OF_SYSTEM_VARIABLES>
The target variable is used together with these system variables besides of its peers:
{% for system_variable in system_variables %}
{{loop.index}}.
Name: {{system_variable.name}}
Type: {{system_variable.param_type}}
Description: {{system_variable.role_desc}}
WILL_BE_OPTIMIZED: {{system_variable.requires_opt}}
Value: {{system_variable.prompt_data}}
{% endfor %}
Strategically plan the role of each system variable to collaborate with each other for final correct answer.
<END_OF_SYSTEM_VARIABLES>
{% endif %}
{# OPRO past history #}
{% if past_history %}
<START_OF_HISTORY_PERFORMANCE>
Here are the best past iterations.
{% for history in past_history %}
{{loop.index}}. {{history}}
{% endfor %}
IMPORTANT: Your goal is to generate new variable that score higher than all past iterations.
<END_OF_HISTORY_PERFORMANCE>
{% endif %}
{# Multi-proposal history #}
{% if failed_proposals %}
<START_OF_CURRENT_ITERATION>
same batch, same feedback: Here are the values you have tried that have not improved the score.(scored <= {{best_score}}):
{% for failed_proposal in failed_proposals %}
{{loop.index}}. {{failed_proposal}}
{% endfor %}
You MUST approach differently from the above methods.
<END_OF_CURRENT_ITERATION>
{% endif %}
{# Feedback #}
{% if variable_grad %}
<START_OF_CONTEXT_FEEDBACK>
Here are the context and feedback for the variable:
{{variable_grad}}
<END_OF_CONTEXT_FEEDBACK>
{% endif %}
{# Constraints #}
{% if constraint_text %}
You must follow the following constraints:
<CONSTRAINTS>{{constraint_text}}</CONSTRAINTS>
{% endif %}
{# In-context examples #}
{% if in_context_examples %}
You must base on the following examples when modifying the {{variable_desc}}:
<EXAMPLES>{{in_context_examples}}</EXAMPLES>
{% endif %}
<END_OF_USER_MESSAGE>
"""
# NO OPRO history
# TEXT_GRAD_DESC_TEMPLATE = r"""<START_OF_SYSTEM_PROMPT>
# {{optimizer_system_prompt}}
# <END_OF_SYSTEM_PROMPT>
# <START_OF_USER_MESSAGE>
# You are {{steps}} steps since your last improvement.
# Update the value more rapidly when steps are larger than 3.
# {# Variable and peers info #}
# <START_OF_VARIABLE_AND_PEERS_INFO>
# {{variable_and_peers_info}}
# <END_OF_VARIABLE_AND_PEERS_INFO>
# {# system trainable variables #}
# {% if system_variables %}
# <START_OF_SYSTEM_VARIABLES>
# The target variable is used together with these system variables besides of its peers:
# {% for system_variable in system_variables %}
# {{loop.index}}.
# Name: {{system_variable.name}}
# Type: {{system_variable.param_type}}
# Description: {{system_variable.role_desc}}
# WILL_BE_OPTIMIZED: {{system_variable.requires_opt}}
# Vaule: {{system_variable.prompt_data}}
# {% endfor %}
# Strategically plan the role of each system variable to collaborate with each other for final correct answer.
# <END_OF_SYSTEM_VARIABLES>
# {% endif %}
# {# Feedback #}
# {% if variable_grad %}
# <START_OF_CONTEXT_FEEDBACK>
# Here are the context and feedback for the variable:
# {{variable_grad}}
# <END_OF_CONTEXT_FEEDBACK>
# {% endif %}
# {# Constraints #}
# {% if constraint_text %}
# You must follow the following constraints:
# <CONSTRAINTS>{{constraint_text}}</CONSTRAINTS>
# {% endif %}
# {# In-context examples #}
# {% if in_context_examples %}
# You must base on the following examples when modifying the {{variable_desc}}:
# <EXAMPLES>{{in_context_examples}}</EXAMPLES>
# {% endif %}
# <END_OF_USER_MESSAGE>
# """
# NO promt engineering techniques
# OPTIMIZER_SYSTEM_PROMPT = r"""You are an excellent prompt engineer tasked with instruction and demonstration tuning a compound LLM system.
# Your task is to refine a variable/prompt based on feedback from a batch of input data points.
# The variable is either input or output of a functional component where the component schema will be provided.
# If the same DataID has multiple gradients, it means this component/variable is called multiple times in the compound system(with a cycle) in the same order as it appears in the gradient list.
# You Must edit the current variable with one of the following editing methods.
# You can not rewrite everything all at once:
# You have Four Editing Methods:
# 1. ADD new elements(instruction) to address each specific feedback.
# 2. ADD Examples (e.g., input-reasoning-answer) for tasks that require strong reasoning skills.
# 3. Rephrase existing instruction(for more clarity), Replace existing sample with another, to address the feedback.
# 4. DELETE unnecessary words to improve clarity.
# Your final action/reasoning = one of FOUR editing method
# You must stick to these instructions:
# 1. **MUST Resolve concerns raised in the feedback** while preserving the positive aspects of the original variable.
# 2. **Observe past performance patterns** to retain good qualities in the variable and past failed ones to try things differently.
# 3. **System Awareness**: When other system variables are given, ensure you understand how this variable works in the whole system.
# 4. **Peer Awareness**: This variable works together with Peer variables, ensure you are aware of their roles and constraints.
# 5. **Batch Awareness**: You are optimizing a batch of input data, ensure the change applys to the whole batch (except while using demonstration.)
# {{output_format_str}}
# {% if instruction_to_optimizer %}
# **Additional User Instructions**: {{instruction_to_optimizer}}
# {% endif %}
# """
OPTIMIZER_SYSTEM_PROMPT = r"""You are an excellent prompt engineer tasked with instruction and demonstration tuning a compound LLM system.
Your task is to refine a variable/prompt based on feedback from a batch of input data points.
The variable is either input or output of a functional component where the component schema will be provided.
If the same DataID has multiple gradients, it means this component/variable is called multiple times in the compound system(with a cycle) in the same order as it appears in the gradient list.
You Must edit the current variable with one of the following editing methods.
You can not rewrite everything all at once:
You have Four Editing Methods:
1. ADD new elements(instruction) to address each specific feedback.
2. ADD Examples (e.g., input-reasoning-answer) for tasks that require strong reasoning skills.
3. Rephrase existing instruction(for more clarity), Replace existing sample with another, to address the feedback.
4. DELETE unnecessary words to improve clarity.
These SIX prompting techniques can be a helpful direction.
1. Set Context and Role: Establish a specific identity or domain expertise for the AI to guide style, knowledge, and constraints.
2. Be Specific, Clear, and Grammarly correct: Clearly define instructions, desired format, and constraints to ensure accurate and relevant outputs with regards to the feedback.
3. Illicit reasoning: "chain-of-thought" (e.g. "think step by step") helps the model reason better.
4. Examples: Construct examples(e.g., input(optional)-reasoning(required)-answer) especially for tasks that require strong reasoning skills.
5. Leverage Constraints and Formatting: Explicitly direct how the answer should be structured (e.g., bullet points, tables, or tone).
6. Self-Consistency / Verification Prompts: Prompt the model to check its own logic for errors, inconsistencies, or missing details.
Your final action/reasoning = one of FOUR editing method + one of SIX prompting technique.
You must stick to these instructions:
1. **MUST Resolve concerns raised in the feedback** while preserving the positive aspects of the original variable.
2. **Observe past performance patterns** to retain good qualities in the variable and past failed ones to try things differently.
3. **System Awareness**: When other system variables are given, ensure you understand how this variable works in the whole system.
4. **Peer Awareness**: This variable works together with Peer variables, ensure you are aware of their roles and constraints.
5. **Batch Awareness**: You are optimizing a batch of input data, ensure the change applys to the whole batch (except while using demonstration.)
{{output_format_str}}
{% if instruction_to_optimizer %}
**Additional User Instructions**: {{instruction_to_optimizer}}
{% endif %}
"""
[docs]
@dataclass
class Instruction(DataClass):
__doc__ = "Structure variable values for instructions. Can be used in the history of instructions."
text: str = field(metadata={"desc": "The instruction text"})
score: float = field(
metadata={"desc": "The score of the instruction, range from 0 to 1"}
)
responses: Optional[List[str]] = field(
metadata={"desc": "The responses of using the instruction"}, default=None
)
gts: Optional[List[str]] = field(
metadata={"desc": "The ground truth of the task"}, default=None
)
[docs]
@dataclass
class TGDData(DataClass):
reasoning: str = field(metadata={"desc": "Why the variable is proposed this way"})
method: str = field(
metadata={
"desc": "The final method used to propose the variable (prompting + editing)"
},
)
proposed_variable: str = field(
metadata={"desc": "The proposed variable"},
default=None,
)
[docs]
@dataclass
class TGDOptimizerTrace(DataClass):
api_kwargs: Dict[str, Any] = field(
metadata={
"desc": "The api_kwargs for components like Generator and Retriever that pass to the model client"
},
default=None,
)
output: TGDData = field(
metadata={"desc": "The output of the TGD optimizer"}, default=None
)
new_variable_tags = ["<VARIABLE>", "</VARIABLE>"]
[docs]
class TGDOptimizer(TextOptimizer):
__doc__ = """Textual Gradient Descent(LLM) optimizer for text-based variables."""
proposing: bool = False
params: ParamsT
constraints: List[str]
params_history: Dict[str, List[HistoryPrompt]] = {} # id to history
failed_proposals: Dict[str, List[HistoryPrompt]] = {} # only need the value
current_tgd_output: Dict[str, Optional[TGDData]] = (
{}
) # id to output, hold all of the data
one_parameter_at_a_time: bool
def __init__(
self,
params: ParamsT,
model_client: "ModelClient",
model_kwargs: Dict[str, object] = {},
constraints: List[str] = None,
optimizer_system_prompt: str = OPTIMIZER_SYSTEM_PROMPT,
in_context_examples: List[str] = None, # TODO: in-context examples
max_past_history: int = 3,
max_failed_proposals: int = 5, # quite effective
steps_from_last_improvement: int = 0,
one_parameter_at_a_time: bool = True,
):
from adalflow.core.generator import Generator
from adalflow.core import Prompt
from adalflow.components.output_parsers.dataclass_parser import DataClassParser
super().__init__()
self.params = params # all parameters of prompts (even if non-trainable)
self.constraints = constraints or []
self.data_class = TGDData
self.output_parser = DataClassParser(
data_class=self.data_class, return_data_class=True, format_type="json"
)
self.optimizer_system_prompt = Prompt(
template=optimizer_system_prompt,
prompt_kwargs={
"output_format_str": self.output_parser.get_output_format_str(),
},
)
self.variable_and_peers_info = Prompt(
template=VARIABLE_AND_PEERS_INFO,
)
self.do_constrained = len(self.constraints) > 0
# self.new_variable_tags = new_variable_tags
self.in_context_examples = in_context_examples or []
self.do_in_context_examples = len(self.in_context_examples) > 0
self.llm_optimizer = Generator(
model_client=model_client,
model_kwargs=model_kwargs,
template=TEXT_GRAD_DESC_TEMPLATE,
output_processors=self.output_parser,
)
self.max_past_history = max_past_history
self.max_failed_proposals = max_failed_proposals
self.steps_from_last_improvement = steps_from_last_improvement
self.target_param_index = None
self.one_parameter_at_a_time = False # one_parameter_at_a_time
# initate the past history for each parameter
for param in self.params:
self.params_history[param.id] = []
self.failed_proposals[param.id] = []
self.current_tgd_output[param.id] = None
@property
def constraint_text(self):
"""
Returns a formatted string representation of the constraints.
:return: A string containing the constraints in the format "Constraint {index}: {constraint}".
:rtype: str
"""
constraints_ordered = [
f"Constraint {i+1}: {constraint}"
for i, constraint in enumerate(self.constraints)
]
return "\n".join(constraints_ordered)
[docs]
def increment_steps_from_last_improvement(self):
self.steps_from_last_improvement += 1
[docs]
def reset_steps_from_last_improvement(self):
self.steps_from_last_improvement = 0
[docs]
def add_score_to_params(self, val_score: float):
for param in self.params:
self.add_score_to_current_param(param.id, param, val_score)
[docs]
def add_score_to_current_param(self, param_id: str, param: Parameter, score: float):
if param_id not in self.params_history:
raise ValueError(f"Parameter {param_id} not found in the history.")
if param.id != param_id:
raise ValueError(
f"Parameter {param_id} does not match the target parameter."
)
history = HistoryPrompt(
id=param_id,
value=str(param.data),
eval_score=score,
)
self.add_history(param_id, history)
[docs]
def add_history(self, param_id: str, history: HistoryPrompt):
if param_id not in self.params_history:
self.params_history[param_id] = []
# check if the value is already in the history, if so, replace it with the new one
for i, h in enumerate(self.params_history[param_id]):
if h.value == history.value:
self.params_history[param_id].pop(i)
break
self.params_history[param_id].append(history)
# sort score from the highest to the lowest
self.params_history[param_id] = sorted(
self.params_history[param_id], key=lambda x: x.eval_score, reverse=True
)
# delete the lowest score if it exceeds the max_past
if len(self.params_history[param_id]) > self.max_past_history:
for _ in range(len(self.params_history[param_id]) - self.max_past_history):
self.params_history[param_id].pop()
[docs]
def render_history(self, param_id: str) -> List[str]:
if param_id not in self.params_history:
return []
return [
history.to_yaml(exclude=["id", "method", "reasoning"])
for history in self.params_history[param_id]
]
[docs]
def add_failed_proposal(self):
"""Save a copy of the current value of the parameter in the failed proposals."""
for param in self.params:
current_tgd_output = self.current_tgd_output.get(param.id, None)
failed_proposal = HistoryPrompt(
id=param.id,
value=param.data,
eval_score=None,
method=(current_tgd_output.method if current_tgd_output else None),
reasoning=(
current_tgd_output.reasoning if current_tgd_output else None
),
)
self.failed_proposals[param.id].append(failed_proposal)
if len(self.failed_proposals[param.id]) > self.max_failed_proposals:
for _ in range(
len(self.failed_proposals[param.id]) - self.max_failed_proposals
):
self.failed_proposals[param.id].pop(0)
[docs]
def render_failed_proposals(self, param_id: str) -> List[str]:
if param_id not in self.failed_proposals:
return []
return [
history.to_yaml(exclude=["id", "eval_score", "value"])
for history in self.failed_proposals[param_id]
]
def _get_user_prompt_kwargs(self, param: Parameter) -> Dict[str, str]:
system_params = [
p.get_param_info()
for p in self.params
if p.id != param.id and p not in param.peers
]
printc(f"system_params: {system_params}", color="blue")
peers_params = [p.get_param_info() for p in param.peers]
variable_and_peer_info = self.variable_and_peers_info.call(
variable=param.get_param_info(), peers=peers_params
)
variable_grad = param.get_gradients_component_schema(skip_correct_sample=False)
user_prompt_kwargs = {
"variable_and_peers_info": variable_and_peer_info,
"variable_grad": variable_grad,
# constraints
"constraint_text": self.constraint_text if self.do_constrained else None,
# in-context examples
"in_context_examples": (
"\n".join(self.in_context_examples)
if self.do_in_context_examples
else None
),
# past history
"past_history": (
self.render_history(param.id) if self.max_past_history else None
),
# failed proposals
"failed_proposals": (
self.render_failed_proposals(param.id)
if self.max_failed_proposals
else None
),
"best_score": (
self.params_history[param.id][0].eval_score
if self.params_history[param.id]
else "N/A"
),
"system_variables": system_params,
"steps": self.steps_from_last_improvement,
}
return user_prompt_kwargs
# TODO: better way to update the gradient memory
[docs]
def update_gradient_memory(self, param: Parameter):
self.gradient_memory_dict[param.id].append(
{"value": param.get_gradient_and_context_text(skip_correct_sample=True)}
)
[docs]
def zero_grad(self):
for p in self.params:
p.reset_gradients()
# reset the failded proposals
for param in self.params:
self.failed_proposals[param.id] = []
[docs]
def set_target_param(self):
# iterate through all indexes in cycle
if self.target_param_index is None:
self.target_param_index = 0
else:
self.target_param_index = (self.target_param_index + 1) % len(self.params)
# TODO: in the future can propose multiple values at once
[docs]
def propose(self):
r"""Proposing a value while keeping previous value saved on parameter."""
if self.proposing:
raise ValueError("Already proposing a value.")
printc("Proposing a new value.", color="magenta")
# no cache so that new proposal can be made
no_cache = True
# print("Proposing a new value.")
for idx, param in enumerate(self.params):
if not param.requires_opt:
log.info(
f"Skipping {param.role_desc} as it does not require optimization."
)
continue
if self.one_parameter_at_a_time and idx != self.target_param_index:
continue
system_prompt = self.optimizer_system_prompt(
param_type=str(param.param_type),
instruction_to_optimizer=param.instruction_to_optimizer,
)
user_prompt_kwargs = self._get_user_prompt_kwargs(param)
prompt_kwargs = {
"optimizer_system_prompt": system_prompt,
**user_prompt_kwargs,
}
# turn off cache
try:
response: GeneratorOutput = self.llm_optimizer.call(
prompt_kwargs=prompt_kwargs, use_cache=not no_cache
)
except Exception as e:
printc(f"Error in the optimizer: {e}", color="red")
raise e
if not isinstance(response, GeneratorOutput):
raise TypeError(f"Wrong response type: {type(response)}")
prompt_str = self.llm_optimizer.get_prompt(**prompt_kwargs)
log.debug(f"TGD LLM optimizer prompt: {prompt_str}")
printc(f"TGD LLM optimizer prompt: {prompt_str}", color="blue")
proposed_data: TGDData = (
response.data
if response.data is not None
else TGDData(
reasoning="No reasoning",
proposed_variable=response.raw_response,
method="No method",
)
)
# save current tgd output data
self.current_tgd_output[param.id] = proposed_data
printc(f"Response from the optimizer: {response}", color="blue")
log.info(f"Response from the optimizer: {response}")
# if not proposed_data.update:
# printc(f"No update is required for {param.name}", color="yellow")
# param.propose_data(param.data)
# else: # TODO: should always trace the initial data
improved_variable = proposed_data.proposed_variable
if (
improved_variable
and improved_variable != param.data
and improved_variable != ""
):
param.propose_data(improved_variable)
else:
param.propose_data(param.data)
param.trace_optimizer(api_kwargs=prompt_str, response=response)
self.proposing = True
[docs]
def revert(self):
"""Revert to the previous value when the evaluation is worse."""
if not self.proposing:
raise ValueError("Not proposing a value.")
for idx, param in enumerate(self.params):
if not param.requires_opt:
continue
if self.one_parameter_at_a_time and idx != self.target_param_index:
continue
param.revert_data()
param.trace_optimizer(api_kwargs=None, response=None)
self.proposing = False
[docs]
def step(self):
"""Discard the previous value and keep the proposed value."""
if not self.proposing:
raise ValueError("Not proposing a value.")
for idx, param in enumerate(self.params):
if not param.requires_opt:
continue
if self.one_parameter_at_a_time and idx != self.target_param_index:
continue
param.step_data()
self.proposing = False
[docs]
def to_dict(self):
return {
"template": TEXT_GRAD_DESC_TEMPLATE,
"optimizer_system_prompt": OPTIMIZER_SYSTEM_PROMPT,
"VARIABLE_AND_PEERS_INFO": VARIABLE_AND_PEERS_INFO,
"params": self.params,
"constraints": self.constraints,
"params_history": self.params_history,
"failed_proposals": self.failed_proposals,
"max_past_history": self.max_past_history,
"max_failed_proposals": self.max_failed_proposals,
"steps_from_last_improvement": self.steps_from_last_improvement,
}
if __name__ == "__main__":
# test the prompt history
data = {
"id": "1",
"value": "test",
"eval_score": 0.5,
}
history = HistoryPrompt.from_dict(data)
print(history)
history_yaml = history.to_yaml()
print(history_yaml)
template = r"""<START_OF_SYSTEM_PROMPT>
{% if past_history %}
Here are the past iterations of this variable along with the validation score.
{% for history in past_history %}
{{loop.index}}. {{history}}
{% endfor %}
{% endif %}
<END_OF_SYSTEM_PROMPT>"""
import adalflow as adal
prompt = adal.Prompt(template=template)
histories = [history_yaml]
prompt_kwargs = {
"past_history": histories,
}
response = prompt(**prompt_kwargs)
# print(response)