Source code for components.model_client.google_client

"""Google GenAI ModelClient integration."""

import os
from typing import Dict, Sequence, Optional, Any
import backoff
import logging


from adalflow.core.model_client import ModelClient
from adalflow.core.types import CompletionUsage, ModelType, GeneratorOutput

from adalflow.utils.lazy_import import safe_import, OptionalPackages

# optional import
google = safe_import(
    OptionalPackages.GOOGLE_GENERATIVEAI.value[0],
    OptionalPackages.GOOGLE_GENERATIVEAI.value[1],
)
import google.generativeai as genai
from google.api_core.exceptions import (
    InternalServerError,
    BadRequest,
    GoogleAPICallError,
)
from google.generativeai.types import GenerateContentResponse

log = logging.getLogger(__name__)


[docs] class GoogleGenAIClient(ModelClient): __doc__ = r"""A component wrapper for the Google GenAI API client. Visit https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference for more api details. Info: 8/1/2024 Tested: gemini-1.0-pro, gemini-1.5-pro-latest .. code-block:: python class UsageMetadata(proto.Message): prompt_token_count: int = proto.Field( proto.INT32, number=1, ) cached_content_token_count: int = proto.Field( proto.INT32, number=4, ) candidates_token_count: int = proto.Field( proto.INT32, number=2, ) total_token_count: int = proto.Field( proto.INT32, number=3, ) """ def __init__(self, api_key: Optional[str] = None): r"""It is recommended to set the GOOGLE_API_KEY environment variable instead of passing it as an argument.""" super().__init__() self._api_key = api_key self.sync_client = self.init_sync_client() self.async_client = None # only initialize if the async call is called self.tested_llm_models = ["gemini-1.0-pro", "gemini-1.5-pro-latest"]
[docs] def init_sync_client(self): api_key = self._api_key or os.getenv("GOOGLE_API_KEY") if not api_key: raise ValueError("Environment variable GOOGLE_API_KEY must be set") genai.configure(api_key=api_key) return genai
[docs] def parse_chat_completion( self, completion: GenerateContentResponse ) -> "GeneratorOutput": """ Parse the completion to a structure your sytem standarizes. (here is str) """ log.debug(f"completion: {completion}") try: data = completion.text usage = self.track_completion_usage(completion) return GeneratorOutput(data=None, usage=usage, raw_response=data) except Exception as e: log.error(f"Error parsing completion: {e}") return GeneratorOutput( data=None, error=str(e), raw_response=str(completion) )
[docs] def track_completion_usage( self, completion: GenerateContentResponse ) -> CompletionUsage: return CompletionUsage( completion_tokens=completion.usage_metadata.candidates_token_count, prompt_tokens=completion.usage_metadata.prompt_token_count, total_tokens=completion.usage_metadata.total_token_count, )
[docs] def convert_inputs_to_api_kwargs( self, input: Optional[Any] = None, model_kwargs: Dict = {}, model_type: ModelType = ModelType.UNDEFINED, ) -> Dict: r""" Specify the API input type and output api_kwargs that will be used in _call and _acall methods. Convert the Component's standard input, and system_input(chat model) and model_kwargs into API-specific format """ final_model_kwargs = model_kwargs.copy() if model_type == ModelType.EMBEDDER: if isinstance(input, str): input = [input] # convert input to input if not isinstance(input, Sequence): raise TypeError("input must be a sequence of text") final_model_kwargs["input"] = input elif model_type == ModelType.LLM: final_model_kwargs["prompt"] = input else: raise ValueError(f"model_type {model_type} is not supported") return final_model_kwargs
[docs] @backoff.on_exception( backoff.expo, ( InternalServerError, BadRequest, GoogleAPICallError, ), max_time=5, ) def call(self, api_kwargs: Dict = {}, model_type: ModelType = ModelType.UNDEFINED): """ kwargs is the combined input and model_kwargs """ if model_type == ModelType.LLM: # remove model from api_kwargs model = api_kwargs.pop("model") prompt = api_kwargs.pop("prompt") assert model != "", "model must be specified" assert prompt != "", "prompt must be specified" config = genai.GenerationConfig(**api_kwargs) llm = genai.GenerativeModel(model_name=model, generation_config=config) return llm.generate_content(contents=prompt) else: raise ValueError(f"model_type {model_type} is not supported")
if __name__ == "__main__": from adalflow.utils import setup_env setup_env() google_client = GoogleGenAIClient()